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Abstract
We have studied the index of refraction of periodic layered semiconductor–
ferrite composite. Both the transmission matrix analysis and full-wave
simulations confirm the existence of a negative index of refraction in the
composite. We find that the magnitude of the negative index of refraction and
its frequency range depend on the ratio of the semiconductor and ferrite layer
thicknesses and the doping content of the semiconductor. At the long-wave
approximation, we have obtained the explicit expression of the effective index
of refraction, effective permittivity and effective permeability. The result shows
that it is possible to fabricate a uniform negative index material with the layered
composite.

Negative index materials (NIMs) have attracted much attention since the observation of
negative refraction in metamaterials consisting of periodic arrays of metallic rings and rods [1].
NIMs have several extraordinary properties [2] and many potential applications [3, 4]. For
example, Pendry [4] predicted that a lossless negative index slab can act as a perfect lens,
which overcomes the resolution limitation in conventional imaging systems. In addition to
metamaterials, negative refraction has also been found in the other materials. Grbic and
Eleftheriades [5] have demonstrated that a specially designed planar transmission line has
negative refraction, and can be used as a left-handed lens. Parimi et al [6] observed negative
refraction in microwave photonic crystals. Chen et al [7] found that negative refraction also
exists in randomized patterns. All NIMs mentioned above are composite structures, and they
rigorously cannot be considered as uniform materials, since the size of structure elements are
usually greater than 1/10 of the wavelength. For example, the size of the unit cell of the
metamaterial is about 5 mm in the X band [8], which is over 1/6 of the wavelength. In
addition, certain field polarization is required in order to exhibit the negative refraction. These
requirements encumber their practical applications. Consider that the rings and rods produce

0953-8984/07/026211+08$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/2/026211
mailto:rxwu@nju.edu.cn
http://stacks.iop.org/JPhysCM/19/026211


J. Phys.: Condens. Matter 19 (2007) 026211 R-X Wu et al

negative permittivity ε and negative permeability μ, respectively [9]; the metamaterials are
similar to multilayers with alternating negative ε and negative μ layers, which could be realized
with natural materials. It is well known that some natural materials have inherent negative ε or
negative μ. For example, certain ferrites have negative permeability in microwave frequencies,
and conducting materials have negative permittivity below the plasma frequency. Recently,
studies show the possibility of making NIM composites with natural materials. Ueda and
Tsutsumi [10] have studied the stacked ferrite–dielectric system in a rectangular waveguide
and experimentally demonstrated the existence of a pass band in the cut-off frequency region.
Wu [11] has demonstrated the existence of a negative index in a periodic layered ferrite–
metal film system. Pimenov et al found negative refraction in ferromagnet–superconductor
superlattices [12]. However, the use of metallic or superconducting materials may excite
surface waves at the interface, which in turn change the electromagnetic characters of the
composite. Meanwhile, the thickness of metallic layers should be very small (about several
nanometres), which has caused some difficulties in the deposition of ferrite–metal multilayers.
To overcome these problems, in this paper we propose a new configuration—the layered ferrite–
semiconductor composite. We will show that the composite has a negative refraction index, but
only with negative permeability, and the magnitude of the negative refraction index and its
frequency bandwidth can be tuned by the thickness ratio of the semiconductor and the ferrite
and the doping concentration of the semiconductor.

The proposed composite consists of alternating layered ferrite and semiconductor, as
shown in figure 1(a). The composite is periodic along the z-axis. In order to obtain the
effective index of refraction, the layered composite should satisfy certain conditions. It has been
demonstrated that the composite has an equivalent single layer if the thickness of each layer is
much smaller than the wavelength, or the multilayers have symmetrical configurations [13, 14].
Without losing the generality, here we choose the unit cell with a symmetrical configuration, i.e.
semiconductor–ferrite–semiconductor or vice versa. Since each layer is a uniform medium, the
composite can be simulated by a series of transmission lines, as shown in figure 1(b), where the
voltage V and current I represent field E and H , respectively [15]. According to the theory of
transmission lines, the input–output of the voltage and current for the unit cell can be expressed
as a product of a transmission matrix of each layer, that is(
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I1

)
= T1T2T1

(
V2

I2

)
= T

(
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)
(1)
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where m = 1, 2, km , Zm , and dm are the propagation constant, characteristic impedance and
thickness of the layers, respectively. Considering that the composite is periodic, the V and I
should satisfy the Floquet theorem [15], which means that the difference of V and I between
port 1 and port 2 in the transmission line should be a constant e±jβd , where d is the thickness
of the unit cell and β is the complex propagation constant of the composite. Then, equation (1)
becomes (
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Equation (3) shows that e±jβd is the eigenvalue of the transmission matrix T . It is easy to prove

that the characteristic equation of T satisfies

λ2 − (T11 + T22)λ + 1 = 0 (4)
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Figure 1. (a) Schematic diagrams of a periodic layered semiconductor–ferrite composite with a
plane wave normally incident. (b) Each layer is equivalent to a transmission line, and the unit cell
is thus a series of transmission lines. (c) For a symmetrical configuration of the unit cell, the series
transmission lines are represented by a single transmission line.

where T11 and T22 are the matrix elements of T . From equation (4), we have dispersion equation
cos(βd) = (T11 + T22)/2. With the expressions of T11 and T22 derived from equations (1) and
(2), we obtain the explicit expression for the dispersion equation,

cos(βd) = cos(2k1d1) cos(k2d2) − 1

2

(
Z1

Z2
+ Z2

Z1

)
sin(2k1d1) sin(k2d2), (5)

which is similar to the dispersion equation for photonic bandgap materials [16]. Since the
configuration is symmetrical, the unit cell can be represented by an equivalent single layer
which is described by a single transmission line, as shown in figure 1(c). The effective
refraction index is thus defined as

neff ≡ c/vϕ = βc/ω, (6)

where c is the speed of light, and vϕ is the wave velocity. Further, if the length of the unit cell
is much smaller than the wavelength, the composite can be considered as a uniform medium.
Hence, we have the effective characteristic impedance of the unit cell:

Z 2
eff = Z 2

1

Z1 Z2 sin(2k1d1) cos(k2d2) + (Z 2
2 cos2(k1d1) − Z 2

1 sin2(k1d1)) sin(k2d2)

Z1 Z2 sin(2k1d1) cos(k2d2) + (Z 2
1 cos2(k1d1) − Z 2

2 sin2(k1d1)) sin(k2d2)
. (7)
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Figure 2. The index of refraction of the composite with different doping content as a function
of frequency computed with equations (5) and (6). The thicknesses d1 and d2 are 0.02 and
0.1 mm, respectively. The inset is the frequency dependence of complex permeability of ferrite
Ba3Co2Fe24O41.

With equations (6) and (7), we obtain the effective permittivity and effective permeability:

εeff = neff

Zeff
μeff = neff Zeff. (8)

For the ferrite–semiconductor composite, a negative index needs a ferrite with negative
permeability, since the permittivity of the semiconductor and ferrite are always positive. It is
well known that some ferrites have a negative μr in the vicinity of the natural ferromagnetic
resonant frequency. For example, a negative μr is found in the barium-cobalt (Ba3Co2Fe24O41)

ferrites [11]. To demonstrate that the proposed composite has a negative effective refraction
index, we use BaCo as magnetic layers. Its complex permittivity is about 12(1–10−3j), and
the complex permeability is frequency dependent, which is shown in the inset of figure 2.
Doped silicon is selected as the dielectric layers. The permittivity of the doped silicon is a
complex number. The real part of the complex permittivity εr1 is about 11.9, the permittivity
of intrinsic Si. The imaginary part εr2 is mainly dependent on the conductivity σ with the
form εr2 = σ/ωε0 [17]. The conductivity varies with doping content ND. Reference [18]
gives the variation of conductivity with the doping content of silicon and other commonly used
semiconductors. With the unit cell configuration shown in figure 1(a) and taking the thickness
of the BaCo and doped silicon to be 0.1 and 0.02 mm, respectively, we first calculated the
effective refraction index, neff, using equations (5) and (6). The results are shown in figure 2.
We can find that a negative effective index of refraction appears at certain frequencies when
the doping content is over 1015 cm−3. Comparing the curves of neff and the permeability
spectrum of BaCo in figure 2, the frequencies with negative neff are within the range where
BaCo has negative permeability. The frequency range for negative neff is closely related to the
doping content. When the doping content is increased, the bandwidth of negative neff becomes
wider. Doping content greatly affects the existence and the frequency bandwidth of negative
neff. The reason is that ND changes the complex permittivity of silicon, which affects the wave
refraction and transmission at the interfaces of the ferrite and silicon. Consequently, it changes
the effective index of the composite.
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Figure 3. Simulations of electric field distribution at 4 GHz. (a) Schematic diagram of the pyramid
in our simulation. The pyramid with angle θ = 5◦ is composed by BaCo–Si multilayers, where the
thickness ratio is 0.2 and unit cell length is 0.14 mm. With ND = 1016 cm−3, the effective refraction
index is about n = −6. (b) Field distribution of the wave refracted from the pyramid, which shows
negative refraction. (c) Field distribution of the wave refracted from a pyramid made of uniform
medium with positive refraction index n = +6. To reduce the computing space, a lossless dielectric
with index n = +3 is used outside the pyramid in the simulations.

(This figure is in colour only in the electronic version)

To validate the proposed composite with a negative index of refraction, we perform
electromagnetic simulations on a pyramid made of the composite. Figure 3(a) gives a schematic
diagram of the pyramid in our simulations. The simulation is performed at 4 GHz with
ND = 1016 cm−3, at which with the parameters of the BaCo and doped Si shown above the
composite has an effective index of refraction of about n = −6, as can be found in the curve
within figure 2. Simulation results are shown in figure 3(b). We can find that the beam incident
on the interface of the prism and background medium refracts to the same side of the normal as
the incident wave. This demonstrates that the index of refraction of the composite is negative.
As a comparison, figure 3(c) gives the simulation result for the prism with a positive index
n = +6. It can be find that, for normal materials, the refraction ray lies on a different side of
the normal to the incident ray.

In addition to the effect of ND, the unit cell configuration, i.e. the unit cell length d and the
thickness ratio r = d1/d2 of silicon and ferrite layers, also affects the negative neff. Figure 4(a)
plots the neff as a function of the thickness ratio at 4 GHz. In the calculation, we take the
doping content of silicon as ND = 1016 cm−3, which gives a conductivity of about 177 S m−1

according to reference [18], which in turn gives a complex permittivity εr = 11.9–796 j and
penetration depth δ of doped silicon layers of about 0.6 mm. At 4 GHz, the permeability of
the BaCo is about μr = −3.1–6.1 j. We suppose that the thickness of the doped silicon layers,
d1, is much less than the penetration depth (d1/δ < 0.1), in order to let electromagnetic (EM)
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Figure 4. Thickness ratio dependence of the (a) effective index of refraction, (b) effective
permeability μeff, and (c) effective permittivity εeff of the composites with different unit cell length.

waves pass through it. It can be found in the figure that the magnitude of neff varies with the
thickness ratio, but depends weakly on the length of the unit cell. For a certain thickness ratios,
neff has negative values. With equations (5)–(8), we have calculated the effective permeability
μeff and permittivity εeff under criteria that the length of the unit cell, d/λ, is less than 0.1 and
d1/δ < 0.1. The results are shown in figure 4(b), (c). The effective permeability μeff depends
only on the thickness ratio, and the effective permittivity has little dependence on the unit cell
length. Compared with these figures, it is obvious that the negative neff originates from negative
μeff, and the multilayer is an only-mu-negative NIM.

We have shown the effects of the complex permittivity of silicon and unit cell configuration
on the effective refraction index, permeability and permittivity using a numerical method. In
the long-wave approximation, an explicit expression can be obtained. Suppose that βd , k1d1

and k2d2 are very small, expanding equation (5) and keeping quadratic terms only, we have

n2
eff =

(
2rε1 + ε2

1 + 2r

)(
2rμ1 + μ2

1 + 2r

)
= εeffμeff, (9)

where r is the thickness ratio, and εeff and μeff are the effective permittivity and permeability
of the composite, respectively. Equation (9) indicates that the thickness ratio alters the
contribution of the ferrite and semiconductor through the terms εeff and μeff. For very small or
very big thickness ratios, εeff and μeff are dominated by either the ferrite or the semiconductor,
respectively, and then neff is always positive for these two extremes. If the ferrite has negative
permeability and the ratio is not too small so that μeff ≈ μ2 and the phase of εeff is big enough,
then the phase of the product εeffμeff is in the second quadrant, as illustrated in figure 5.
Consequently, the index of refraction nneff = √

εeffμeff is negative. As can also be found
in equation (9), the index neff is independent of the unit cell length. Therefore, the unit cell
length could be small so long as the values of ε and μ of the ferrite and the semiconductor
are not altered due to finite-size effect. Usually, ε and μ of a particle are the same as those of
bulk materials if the particle size is greater than several hundred nanometres. So, the length
of the unit cell of the composite could be of the order of a micrometre, which enables the
fabrication of NIMs based on thin films, which is much more convenient than the structured
composites. Meanwhile, the tunable character of the doping content of semiconductors and
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Figure 5. Schematic diagram of neff, εeff and μeff on the complex plane. If μeff has a negative real
part, then the composite has a negative index as long as εeff is close to the imaginary axis, even
though its real part is positive.

the sufficiently usable thickness ratios make the fabrication of NIMs not as difficult as that of
a metallic film based composite. In addition, since the length of unit cell is of the order of
a micrometre, which is much smaller than the wavelength λ in the composite at microwave
frequencies, the composite can be considered as a uniform medium. Therefore, the proposed
configuration provides a possible way to fabricate uniform negative index materials. It may be
noticed that this only-mu-negative NIM is lossy. However, since this NIM can be in the form of
thin films, its thickness could be much smaller than the effective penetration depth, and whole
damping could be lower than the metamaterial. Meanwhile, there are some ways to reduce the
loss effectively, such as applying a magnetic field, choosing an appropriate configuration, etc,
which we are currently working on.

In conclusion, we have studied the index of refraction of a periodic layered BaCo–Si
composite, and demonstrated that the composite can be a negative index material under certain
conditions. The magnitude of the effective negative index of refraction and its frequency band
can be controlled by the doping content of the semiconductor and the composite configuration.
We have calculated the effective permittivity and permeability of the composite and found that
the negative refraction index arises from the negative permeability, which indicates that the
composite is an only-mu-negative NIM. In the long-wave approximation, we have derived an
explicit expression for the refraction index and shown that the length of the unit cell can be of
the order of micrometres, therefore it is possible to fabricate uniform negative refraction index
materials with the proposed configuration.
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